
Lecture 25, page

Distributed Middleware

1CS677: Distributed and Operating Systems

• Distributed objects

• EJBs
• DCOM
• CORBA
• Jini

• Distributed Data Processing
– Hadoop
– Spark

Lecture 25, page

Distributed Objects

2CS677: Distributed and Operating Systems

• Figure 10-1. Common organization of a remote  
object with client-side proxy.

Lecture 25, page

Example: Enterprise Java Beans

3CS677: Distributed and Operating Systems

• Figure 10-2. General
architecture of an
EJB server.

Lecture 25, page

Parts of an EJB

4CS677: Distributed and Operating Systems

• Home interface:
– Object creation, deletion
– Location of persistent objects (entity beans)
– Object identifier is class-managed

• Remote interface
– “business logic”
– i.e. the object itself

• Terminology differences
– Client/server -> web applications

Lecture 25, page

Four Types of EJBs

5CS677: Distributed and Operating Systems

• Stateless session beans
• Stateful session beans
• Entity beans - persist state on disk
• Message-driven beans

Lecture 25, page

CORBA Overview

6CS677: Distributed and Operating Systems

• Object request broker (ORB)
– Core of the middleware platform
– Handles communication between objects and clients
– Handles distribution and heterogeneity issues
– May be implemented as libraries

• Facilities: composition of CORBA services

Lecture 25, page

Corba Services
Service Description

Collection Facilities for grouping objects into lists, queue, sets, etc.

Query Facilities for querying collections of objects in a declarative manner

Concurrency Facilities to allow concurrent access to shared objects

Transaction Flat and nested transactions on method calls over multiple objects

Event Facilities for asynchronous communication through events

Notification Advanced facilities for event-based asynchronous communication

Externalization Facilities for marshaling and unmarshaling of objects

Life cycle Facilities for creation, deletion, copying, and moving of objects

Licensing Facilities for attaching a license to an object

Naming Facilities for systemwide name of objects

Property Facilities for associating (attribute, value) pairs with objects

Trading Facilities to publish and find the services on object has to offer

Persistence Facilities for persistently storing objects

Relationship Facilities for expressing relationships between objects

Security Mechanisms for secure channels, authorization, and auditing

Time Provides the current time within specified error margins

7CS677: Distributed and Operating Systems

Lecture 25, page

Object Model

8CS677: Distributed and Operating Systems

• Objects & services specified using an Interface Definition language (IDL)
– Used to specify interface of objects and/or services

• ORB: run-time system that handles object-client communication
• Dynamic invocation interface: allows object invocation at run-time

– Generic invoke operation: takes object reference as input
– Interface repository stores all interface definitions

Lecture 25, page

Object Invocation Models

9CS677: Distributed and Operating Systems

• Invocation models supported in CORBA.
– Original model was RMI/RPC-like
– Current CORBA versions support additional semantics

Request type Failure semantics Description

Synchronous At-most-once Caller blocks until a response is returned
or an exception is raised

One-way Best effort delivery Caller continues immediately without
waiting for any response from the server

Deferred
synchronous

At-most-once Caller continues immediately and can
later block until response is delivered

Lecture 25, page

Event and Notification Services (1)

10CS677: Distributed and Operating Systems

• The logical organization of suppliers and consumers of events,
following the push-style model. (PUB-SUB model)

Lecture 25, page CS677: Distributed OS

Event and Notification Services (2)

11CS677: Distributed and Operating Systems

• The pull-style model for event delivery in CORBA.

Lecture 25, page

Messaging: Async. Method Invocation

12CS677: Distributed and Operating Systems

• CORBA's callback model for asynchronous method invocation.

Lecture 25, page

Messaging (2)

13CS677: Distributed and Operating Systems

• CORBA'S polling model for asynchronous method invocation.

Lecture 25, page

DCOM

14CS677: Distributed and Operating Systems

• Distributed Component Object Model
– Microsoft’s object model (middleware)
– Now evolved into .NET

Lecture 25, page

DCOM: History

15CS677: Distributed and Operating Systems

• Successor to COM
– Developed to support compound documents

• Word document with excel spreadsheets and images
• Object linking and embedding (OLE)

– Initial version: message passing to pass information between parts
– Soon replaced by a more flexible layer: COM

• ActiveX: OLE plus new features
– No good consensus on what exactly does ActiveX contain
– Loosely: groups capabilities within applications to support scripting, grouping

of objects.
• DCOM: all of the above, but across machines

Lecture 25, page

Type Library and Registry

16CS677: Distributed and Operating Systems

• The overall architecture of DCOM.
– Type library == CORBA interface repository
– Service control manager == CORBA implementation repository

Lecture 25, page

Monikers: Persistent Objects

17CS677: Distributed and Operating Systems

• By default, DCOM objects are transient
• Persistent objects implemented using monikers (reference stored on disk)

– Has all information to recreate the object at a later time

Step Performer Description

1 Client Calls BindMoniker at moniker

2 Moniker Looks up associated CLSID and instructs SCM to
create object

3 SCM Loads class object

4 Class object Creates object and returns interface pointer to
moniker

5 Moniker Instructs object to load previously stored state

6 Object Loads its state from file

7 Moniker Returns interface pointer of object to client

Lecture 25, page

Distributed Coordination

18CS677: Distributed and Operating Systems

• Motivation
– Next generation of systems will be inherently distributed

– Main problem: techniques to coordinate various components
• Emphasis on coordination of activities between components

Lecture 25, page

Introduction to Coordination Models

19CS677: Distributed and Operating Systems

• Key idea: separation of computation from coordination
• A taxonomy of coordination models

– Direct coordination
– Mailbox coordination
– Meeting-oriented coordination (publish/subscribe)
– Generative (shared tuple space)

Lecture 25, page

Jini Case Study

20CS677: Distributed and Operating Systems

• Coordination system based on Java
– Clients can discover new services as they become available
– Example: “intelligent toaster”
– Distributed event and notification system

• Coordination model
– Bulletin board model
– Uses JavaSpaces: a shared dataspace that stores tuples

• Each tuple points to a Java object

Lecture 25, page

Overall Approach

21CS677: Distributed and Operating Systems

• The principle of exchanging data items between publishers and
subscribers.

Lecture 25, page

Overview of Jini

22CS677: Distributed and Operating Systems

• The general organization of a JavaSpace in Jini.

Lecture 25, page

Communication Events

23CS677: Distributed and Operating Systems

• Using events in combination with a JavaSpace

Lecture 25, page

Processes (1)

24CS677: Distributed and Operating Systems

• A JavaSpace can be replicated on all machines. The dotted lines show the
partitioning of the JavaSpace into subspaces.

a) Tuples are broadcast on WRITE
b) READs are local, but the removing of an instance when calling TAKE must

be broadcast

Lecture 25, page CS677: Distributed OS

Processes (2)

25CS677: Distributed and Operating Systems

• Unreplicated JavaSpace.
a) A WRITE is done locally.
b) A READ or TAKE requires the template tuple to be broadcast in

order to find a tuple instance

Lecture 25, page

Distributed Data Processing

26CS677: Distributed and Operating Systems

• Big data processing framework

• Hadoop / Map Reduce

• Spark

• material courtesy of Natl Inst of Computational Sciences/ ORNL / Baer, Begoli et. al

Lecture 25, page

Big Data Applications

27CS677: Distributed and Operating Systems

• Very large datasets, need to distribute processing of data sets
– Parallelize data processing

Lecture 25, page

MapReduce Programming Model

28CS677: Distributed and Operating Systems

• Map Phase and Reduce Phase, connected by a shuffle

Lecture 25, page

Other Programming Models

29CS677: Distributed and Operating Systems

• Extend MapReduce to Directed Acyclic Graphs with recovery
– Apache Tez,

• Microsoft’s Dryad and Naiad

• DAG with in-memory resilient distributed data sets
– Spark

• Extend DAG model to cyclic graphs: Flink

• Allow streaming data: Spark Streaming, Naiad, Kafka, Flink

Lecture 25, page

Hadoop Big Data Platform

30CS677: Distributed and Operating Systems

• Popular platform for processing large amounts of data

• EcoSystem:

• Storage managers : HDFS, HBASE, Kafka, etc.

• Processing framework: MapReduce, Spark, etc.

• Resource managers: Yarn, Mesos, etc.

Lecture 25, page

Ecosystem

31CS677: Distributed and Operating Systems

Lecture 25, page

Ecosystem overview

32CS677: Distributed and Operating Systems

• General purpose framework: low level processing APIs
– MapReduce, Spark, Flink

• Abstraction frameworks: higher level abstractions for processing
– Pig

• SQL frameworks: allow data querying : Hive
• Graph processing frameworks: Giraph
• Machine learning frameworks: MLlib, Oyyx (standalone:

TensorFlow)
• Real-time/stream processing: Spark Streaming, Storm, Kafka

• Cluster managers: YARN, Mesos (allocate machines to separate
frameworks).

Lecture 25, page

Spark Platform

33CS677: Distributed and Operating Systems

• Ease of use: supports Java, Scala or Python
• General: combines SQL, streaming, ML, graph processing
• Faster due to in-memory RDDs
• Compatibility: runds on Hadoop, standalone, etc

Lecture 25, page

Spark Architecture

34CS677: Distributed and Operating Systems

• Resilient Distributed Datasets: distributed memory
– objects cached in RAM across a cluster

• DAG execution engine : eliminates MapReduce multi-stage model
• RDD Narrow transform: Map, Filter, Sample
• RDD Wide transform: SortBy, ReduceBy, GroupBy, Join
• Action: Collect, Reduce

