Distributed Middleware

 Distributed objects

* EJBs

- DCOM
« CORBA
* Jimi

Distributed Data Processing

— Hadoop
— Spark
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Example: Enterprise Java Beans
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Parts of an EJB

* Home interface:
— Object creation, deletion

— Location of persistent objects (entity beans)
— Object identifier is class-managed

* Remote interface
— “business logic”

— 1.e. the object itself

» Terminology differences
— Client/server -> web applications
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Four Types of EJBs

Stateless session beans

Stateful session beans

Entity beans - persist state on disk
Message-driven beans
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CORBA Overview

Application Vertical Horizontal Common
objects facilities facilities Object
(domain specific) (general purpose) Services
Object Request Broker

* Object request broker (ORB)
— Core of the middleware platform
— Handles communication between objects and clients
— Handles distribution and heterogeneity issues

— May be implemented as libraries

* Facilities: composition of CORBA services
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Corba Services

Service Description

Collection Facilities for grouping objects into lists, queue, sets, etc.

Query Facilities for querying collections of objects in a declarative manner

Concurrency Facilities to allow concurrent access to shared objects

Transaction Flat and nested transactions on method calls over multiple objects

Event Facilities for asynchronous communication through events

Notification Advanced facilities for event-based asynchronous communication

Externalization Facilities for marshaling and unmarshaling of objects

Life cycle Facilities for creation, deletion, copying, and moving of objects

Licensing Facilities for attaching a license to an object

Naming Facilities for systemwide name of objects

Property Facilities for associating (attribute, value) pairs with objects

Trading Facilities to publish and find the services on object has to offer

Persistence Facilities for persistently storing objects

Relationship Facilities for expressing relationships between objects

Security Mechanisms for secure channels, authorization, and auditing

Time Provides the current time within specified error margins
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Object Model

Client machine Server machine

Client application Object implementation
Static Dynamic ORB Object Skeleton | Dynamic ORB

IDL Invocation | interface adapter Skeleton | interface
proxy Interface Interface
Client ORB Server ORB
Local OS Local OS
Network

* Objects & services specified using an Interface Definition language (IDL)
— Used to specify interface of objects and/or services

* ORB: run-time system that handles object-client communication

* Dynamic invocation interface: allows object invocation at run-time
— Generic invoke operation: takes object reference as input
— Interface repository stores all interface definitions
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Obiject Invocation Models

Request type Failure semantics Description

Synchronous At-most-once Caller blocks until a response is returned
or an exception is raised

One-way Best effort delivery Caller continues immediately without
waiting for any response from the server

Deferred At-most-once Caller continues immediately and can
synchronous later block until response is delivered

* Invocation models supported in CORBA.
— Original model was RMI/RPC-like
— Current CORBA versions support additional semantics
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Event and Notification Services (1)

Push event to consumers

Supplier

Consumer Ré
Consumer &— |

Event channel «€———— Supplier

Supplier

* The logical organization of suppliers and consumers of events,
following the push-style model. (PUB-SUB model)
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Event and Notification Services (2)

Ask suppliers for new event

/ >/V Supplier
‘ Consumer

R Eventchannel ———®»  Supplier
Consumer

Supplier

* The pull-style model for event delivery in CORBA.
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Messaging: Async. Method Invocation

CORBA's callback model for asynchronous method invocation.

Client application

application

Client
proxy

Callback | 4. Call by the ORB
interface

3. Response from server

Client

1. Call by the > +
ORB -

2. Request to server
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1. Call by the
application

Messaging (2)

Client application

» * + < 4. Call by the
i application
Client | Polling
proxy interface
i 4 3. Response from server
Client | \ 4
ORB \ I

______________ b

2. Request to server

*  CORBA'S polling model for asynchronous method invocation.
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DCOM

 Distributed Component Object Model
— Microsoft’s object model (middleware)
— Now evolved into .NET

Grouping -
Documents (Controls) Scripting
In-place
editing
Embedding Dcl?cime”t
inking Drag
and drop
Interprocess
data transfer | persistent Object
Persistent | references | activation
storage
Core COM library
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DCOM: History

e Successor to COM

— Developed to support compound documents
* Word document with excel spreadsheets and images

Object linking and embedding (OLE)
— Initial version: message passing to pass information between parts
— Soon replaced by a more flexible layer: COM
ActiveX: OLE plus new features
— No good consensus on what exactly does ActiveX contain
— Loosely: groups capabilities within applications to support scripting, grouping
of objects.

DCOM: all of the above, but across machines
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Type Library and Registry

* The overall architecture of DCOM.

— Type library == CORBA interface repository
— Service control manager == CORBA implementation repository

Client machine Object server
SCM Client application { gk';‘:‘(f’tj LObjeotJ SCM
, A
Proxy Client | com Proxy | Object| |cOM
? marshaler proxy marshaler| stub T
Local OS Local OS Y
Registry Registry Ej
Y »
Network

Microsoft RPC
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Monikers:

Persistent Objects

Step Performer Description

1 Client Calls BindMoniker at moniker

2 Moniker Looks up_associated CLSID and instructs SCM to
create object

3 SCM Loads class object

4 Class object gfrﬁ;fasr object and returns interface pointer to

5 Moniker Instructs object to load previously stored state

6 Object Loads its state from file

7 Moniker Returns interface pointer of object to client

* By default, DCOM objects are transient
» Persistent objects implemented using monikers (reference stored on disk)
— Has all information to recreate the object at a later time
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* Motivation
— Next generation of systems will be inherently distributed
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Distributed Coordination

— Main problem: techniques to coordinate various components

* Emphasis on coordination of activities between components

UMassAmherst
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Introduction to Coordination Models

» Key idea: separation of computation from coordination

» A taxonomy of coordination models
— Direct coordination
— Mailbox coordination
— Meeting-oriented coordination (publish/subscribe)
— Generative (shared tuple space)

Temporal
Coupled Uncoupled
Coupled Direct Mailbox
Referential
Uncoupled Meeting Generative
oriented communication
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Jini Case Study

* Coordination system based on Java
— Clients can discover new services as they become available
— Example: “intelligent toaster”
— Distributed event and notification system

* Coordination model
— Bulletin board model
— Uses JavaSpaces: a shared dataspace that stores tuples
 Each tuple points to a Java object
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Overall Approach

Publisher Subscriber Subscriber
AA
_ o . | Read/Delivery 1
Data item @ Subscription O Y
+ T Notification ©
\ A \
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!
Publish/subscribe middleware Match

* The principle of exchanging data items between publishers and

subscribers.
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Tuple instance

A JavaSpace

* The general organization of a JavaSpace in Jini.
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Communication Events

1. Request
"\ Read T
W LTF

notification T
forT

C | Write C

_ 4. Look for
3. Notify when tuple that
5 Insert a C is inserted matches T
copyof CY{ ,7oTdmmomommmmoooo "
ey | 5. Return C
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—————————————————— - remove it)

» Using events in combination with a JavaSpace
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Processes (1)

Process doing
Tuple broadcast a write broadcasts

-

Network

Process doing a take

examines local JavaSpace Tuple delete  Subspaces

< yvy
L L
. J J

Network
(b)

A JavaSpace can be replicated on all machines. The dotted lines show the
partitioning of the JavaSpace into subspaces.

a) Tuples are broadcast on WRITE

b) READ:s are local, but the removing of an instance when calling TAKE must
be broadcast
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Processes (2)

Process doing a write
inserts tuple into local JavaSpace

T
1
|
1

(L

Network

Process doing a read
broadcasts template

@)

Template broadcast

"""" * S
\_ . J
Network
(b)
. Unreplicated JavaSpace.

a) A WRITE is done locally.

b) A READ or TAKE requires the template tuple to be broadcast in

order to find a tuple instance
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Distributed Data Processing

* Big data processing framework

* Hadoop / Map Reduce

* Spark
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Big Data Applications

» Very large datasets, need to distribute processing of data sets

— Parallelize data processing

Image and sensor data Personal/genomic data

‘Big Data’ Platform

,»"‘_ r!')i:‘

e L

=
b Clinical data

Financial and administrative data

Lecture 25, page 27

CS677: Distributed and Operating Systems

UMassAmherst

MapReduce Programming Model

* Map Phase and Reduce Phase, connected by a shuffle

Node 2 Node 3
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o
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| Reducing process |
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locally
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Other Programming Models

« Extend MapReduce to Directed Acyclic Graphs with recovery
— Apache Tez,

* Microsoft’s Dryad and Naiad

* DAG with in-memory resilient distributed data sets
— Spark

* Extend DAG model to cyclic graphs: Flink

» Allow streaming data: Spark Streaming, Naiad, Kafka, Flink
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Hadoop Big Data Platform

* Popular platform for processing large amounts of data
* EcoSystem:

» Storage managers : HDFS, HBASE, Kafka, etc.

* Processing framework: MapReduce, Spark, etc.

* Resource managers: Yarn, Mesos, etc.
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Ecosystem

— T T

Data processing - - -

frameworks

s
management

Storage management | HDFS HBase
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Ecosystem overview

* General purpose framework: low level processing APIs
— MapReduce, Spark, Flink

» Abstraction frameworks: higher level abstractions for processing
— Pig

* SQL frameworks: allow data querying : Hive

» QGraph processing frameworks: Giraph

* Machine learning frameworks: MLIib, Oyyx (standalone:
TensorFlow)

* Real-time/stream processing: Spark Streaming, Storm, Kafka

* Cluster managers: YARN, Mesos (allocate machines to separate
frameworks).
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Spark Platform

Spark MLlIib
Streamingll (machine

learning)

Apache Spark

Ease of use: supports Java, Scala or Python

General: combines SQL, streaming, ML, graph processing

Faster due to in-memory RDDs

Compatibility: runds on Hadoop, standalone, etc
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Spark Architecture

* Resilient Distributed Datasets: distributed memory
— objects cached in RAM across a cluster

* DAG execution engine : eliminates MapReduce multi-stage model
* RDD Narrow transform: Map, Filter, Sample

* RDD Wide transform: SortBy, ReduceBy, GroupBy, Join

* Action: Collect, Reduce
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