Distributed Middleware

 Distributed objects

* EJBs

- DCOM
« CORBA
* Jimi

Distributed Data Processing

— Hadoop
— Spark
[JMaSS Amherst CS677: Distributed and Operating Systems Lecture 25, page 1
Client machine Server machine
| Object
Client Server -]
IF State
Same
Client interfe_lce D D D Method
invokes < B8 ODje6t
a method
a\‘/ilfézn] ,,__————A [~ Interface
Proxy same method Skeleton
at object A
Client OS Server OS
S J
Network

¢ Figure 10-1. Common organization of a remote

Marshalled invocation
is passed across network

object with client-side proxy.

UMassAmherst

CS677: Distributed and Operating Systems

Lecture 25, page 2

Example: Enterprise Java Beans

Container

- &_E,_

Server

\\
: — = ([5y
Services +——1Z (| 2| 9| 2
oll Ol ©|| =
- (63
* Figure 10-2. General
architecture of an Server kernel
EJB server.
Local OS
Network I
UMaSSAmherSt CS677: Distributed and Operating Systems Lecture 25, page 3

Parts of an EJB

* Home interface:
— Object creation, deletion

— Location of persistent objects (entity beans)
— Object identifier is class-managed

* Remote interface
— “business logic”

— 1.e. the object itself

» Terminology differences
— Client/server -> web applications

UMassAmherst CS677: Distributed and Operating Systems Lecture 25, page 4

Four Types of EJBs

Stateless session beans

Stateful session beans

Entity beans - persist state on disk
Message-driven beans

IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 25, page 5

CORBA Overview

Application Vertical Horizontal Common
objects facilities facilities Object
(domain specific) (general purpose) Services
Object Request Broker

* Object request broker (ORB)
— Core of the middleware platform
— Handles communication between objects and clients
— Handles distribution and heterogeneity issues

— May be implemented as libraries

* Facilities: composition of CORBA services

IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 25, page 6

Corba Services

Service Description

Collection Facilities for grouping objects into lists, queue, sets, etc.

Query Facilities for querying collections of objects in a declarative manner

Concurrency Facilities to allow concurrent access to shared objects

Transaction Flat and nested transactions on method calls over multiple objects

Event Facilities for asynchronous communication through events

Notification Advanced facilities for event-based asynchronous communication

Externalization Facilities for marshaling and unmarshaling of objects

Life cycle Facilities for creation, deletion, copying, and moving of objects

Licensing Facilities for attaching a license to an object

Naming Facilities for systemwide name of objects

Property Facilities for associating (attribute, value) pairs with objects

Trading Facilities to publish and find the services on object has to offer

Persistence Facilities for persistently storing objects

Relationship Facilities for expressing relationships between objects

Security Mechanisms for secure channels, authorization, and auditing

Time Provides the current time within specified error margins
UMassAmherst CS677: Distributed and Operating Systems Lecture 25, page 7

Object Model

Client machine Server machine

Client application Object implementation
Static Dynamic ORB Object Skeleton | Dynamic ORB

IDL Invocation | interface adapter Skeleton | interface
proxy Interface Interface
Client ORB Server ORB
Local OS Local OS
Network

* Objects & services specified using an Interface Definition language (IDL)
— Used to specify interface of objects and/or services

* ORB: run-time system that handles object-client communication

* Dynamic invocation interface: allows object invocation at run-time
— Generic invoke operation: takes object reference as input
— Interface repository stores all interface definitions

UMassAmherst CS677: Distributed and Operating Systems Lecture 25, page 8

Obiject Invocation Models

Request type Failure semantics Description

Synchronous At-most-once Caller blocks until a response is returned
or an exception is raised

One-way Best effort delivery Caller continues immediately without
waiting for any response from the server

Deferred At-most-once Caller continues immediately and can
synchronous later block until response is delivered

* Invocation models supported in CORBA.
— Original model was RMI/RPC-like
— Current CORBA versions support additional semantics

IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 25, page 9

Event and Notification Services (1)

Push event to consumers

Supplier

Consumer Ré
Consumer &— |

Event channel «€———— Supplier

Supplier

* The logical organization of suppliers and consumers of events,
following the push-style model. (PUB-SUB model)

[JMassAmherst CS677: Distributed and Operating Systems Lecture 25, page 10

Event and Notification Services (2)

Ask suppliers for new event

/ >/V Supplier
‘ Consumer

R Eventchannel ———®» Supplier
Consumer

Supplier

* The pull-style model for event delivery in CORBA.

[JMassAmherst CS677: DiskiBitddiatidbOieet40g Systems Lecture 25, page 11

Messaging: Async. Method Invocation

CORBA's callback model for asynchronous method invocation.

Client application

application

Client
proxy

Callback | 4. Call by the ORB
interface

3. Response from server

Client

1. Call by the > +
ORB -

2. Request to server

[_]Mass Amherst CS677: Distributed and Operating Systems Lecture 25, page 12

1. Call by the
application

Messaging (2)

Client application

» * + < 4. Call by the
i application
Client | Polling
proxy interface
i 4 3. Response from server
Client | \ 4
ORB \ I

______________ b

2. Request to server

* CORBA'S polling model for asynchronous method invocation.

UMassAmherst

ActiveX

{
“
.
|

UMassAmherst

CS677: Distributed and Operating Systems

Lecture 25, page 13

DCOM

 Distributed Component Object Model
— Microsoft’s object model (middleware)
— Now evolved into .NET

Grouping -
Documents (Controls) Scripting
In-place
editing
Embedding Dcl?cime”t
inking Drag
and drop
Interprocess
data transfer | persistent Object
Persistent | references | activation
storage
Core COM library

CS677: Distributed and Operating Systems

Lecture 25, page 14

DCOM: History

e Successor to COM

— Developed to support compound documents
* Word document with excel spreadsheets and images

Object linking and embedding (OLE)
— Initial version: message passing to pass information between parts
— Soon replaced by a more flexible layer: COM
ActiveX: OLE plus new features
— No good consensus on what exactly does ActiveX contain
— Loosely: groups capabilities within applications to support scripting, grouping
of objects.

DCOM: all of the above, but across machines

UMassAmherst CS677: Distributed and Operating Systems Lecture 25, page 15

Type Library and Registry

* The overall architecture of DCOM.

— Type library == CORBA interface repository
— Service control manager == CORBA implementation repository

Client machine Object server
SCM Client application { gk';‘:‘(f’tj LObjeotJ SCM
, A
Proxy Client | com Proxy | Object| |cOM
? marshaler proxy marshaler| stub T
Local OS Local OS Y
Registry Registry Ej
Y »
Network

Microsoft RPC

UMassAmherst CS677: Distributed and Operating Systems Lecture 25, page 16

Monikers:

Persistent Objects

Step Performer Description

1 Client Calls BindMoniker at moniker

2 Moniker Looks up_associated CLSID and instructs SCM to
create object

3 SCM Loads class object

4 Class object gfrﬁ;fasr object and returns interface pointer to

5 Moniker Instructs object to load previously stored state

6 Object Loads its state from file

7 Moniker Returns interface pointer of object to client

* By default, DCOM objects are transient
» Persistent objects implemented using monikers (reference stored on disk)
— Has all information to recreate the object at a later time

UMassAmherst

* Motivation
— Next generation of systems will be inherently distributed

CS677: Distributed and Operating Systems Lecture 25, page 17

Distributed Coordination

— Main problem: techniques to coordinate various components

* Emphasis on coordination of activities between components

UMassAmherst

CS677: Distributed and Operating Systems Lecture 25, page 18

Introduction to Coordination Models

» Key idea: separation of computation from coordination

» A taxonomy of coordination models
— Direct coordination
— Mailbox coordination
— Meeting-oriented coordination (publish/subscribe)
— Generative (shared tuple space)

Temporal
Coupled Uncoupled
Coupled Direct Mailbox
Referential
Uncoupled Meeting Generative
oriented communication
[JMassAmherst CS677: Distributed and Operating Systems Lecture 25, page 19

Jini Case Study

* Coordination system based on Java
— Clients can discover new services as they become available
— Example: “intelligent toaster”
— Distributed event and notification system

* Coordination model
— Bulletin board model
— Uses JavaSpaces: a shared dataspace that stores tuples
 Each tuple points to a Java object

[JMassAmherst CS677: Distributed and Operating Systems Lecture 25, page 20

Overall Approach

Publisher Subscriber Subscriber
AA
_ o . | Read/Delivery 1
Data item @ Subscription O Y
+ T Notification ©
\ A \

Ceg® o ®° g ® o

!
Publish/subscribe middleware Match

* The principle of exchanging data items between publishers and

subscribers.
IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 25, page 21
A | Write A B | Write B Read T
C
Look for
Insert a Insert a tuple that
copy of A copy of B matches T
E A i Return C
l ! (and optionally
l ! remove it)
! B B| r——- |

Tuple instance

A JavaSpace

* The general organization of a JavaSpace in Jini.

IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 25, page 22

Communication Events

1. Request
"\ Read T
W LTF

notification T
forT

C | Write C

_ 4. Look for
3. Notify when tuple that
5 Insert a C is inserted matches T
copyof CY{ ,7oTdmmomommmmoooo "
ey | 5. Return C
A (and optionally
—————————————————— - remove it)

» Using events in combination with a JavaSpace

[JMassAmherst CS677: Distributed and Operating Systems Lecture 25, page 23

Processes (1)

Process doing
Tuple broadcast a write broadcasts

-

Network

Process doing a take

examines local JavaSpace Tuple delete Subspaces

< yvy
L L
. J J

Network
(b)

A JavaSpace can be replicated on all machines. The dotted lines show the
partitioning of the JavaSpace into subspaces.

a) Tuples are broadcast on WRITE

b) READ:s are local, but the removing of an instance when calling TAKE must
be broadcast

[JMassAmherst CS677: Distributed and Operating Systems Lecture 25, page 24

Processes (2)

Process doing a write
inserts tuple into local JavaSpace

T
1
|
1

(L

Network

Process doing a read
broadcasts template

@)

Template broadcast

"""" * S
_ . J
Network
(b)
. Unreplicated JavaSpace.

a) A WRITE is done locally.

b) A READ or TAKE requires the template tuple to be broadcast in

order to find a tuple instance

UMassAmherst

Distributed Data Processing

* Big data processing framework

* Hadoop / Map Reduce

* Spark

CS677: DiskiBitddiatidbOieet40g Systems

material courtesy of Natl Inst of Computational Sciences/ ORNL / Baer, Begoli et. al

UMassAmherst

CS677: Distributed and Operating Systems

Lecture 25, page 25

Lecture 25, page 26

Big Data Applications

» Very large datasets, need to distribute processing of data sets

— Parallelize data processing

Image and sensor data Personal/genomic data

‘Big Data’ Platform

,»"‘_ r!')i:‘

e L

=
b Clinical data

Financial and administrative data

Lecture 25, page 27

CS677: Distributed and Operating Systems

UMassAmherst

MapReduce Programming Model

* Map Phase and Reduce Phase, connected by a shuffle

Node 2 Node 3

EEReEr

Node 1

Pre-loaded local
input data

EExaur

REIT

Mapprng process

Mappmg process

Mapplng process

OO0

btk

Intermediate data
from mappers

OO0

Values exchanged
by shuffle process

Node 1 Node 2 Node 3

WQW

@W@W

Reduc:ng process

o

Reducing process
generates outputs

Reducmg process

| Reducing process |

Outputs stored
locally

CS677: Distributed and Operating Systems

UMassAmherst

Lecture 25, page 28

Other Programming Models

« Extend MapReduce to Directed Acyclic Graphs with recovery
— Apache Tez,

* Microsoft’s Dryad and Naiad

* DAG with in-memory resilient distributed data sets
— Spark

* Extend DAG model to cyclic graphs: Flink

» Allow streaming data: Spark Streaming, Naiad, Kafka, Flink

[JMassAmherst CS677: Distributed and Operating Systems Lecture 25, page 29

Hadoop Big Data Platform

* Popular platform for processing large amounts of data
* EcoSystem:

» Storage managers : HDFS, HBASE, Kafka, etc.

* Processing framework: MapReduce, Spark, etc.

* Resource managers: Yarn, Mesos, etc.

[JMassAmherst CS677: Distributed and Operating Systems Lecture 25, page 30

Ecosystem

— T T

Data processing - - -

frameworks

s
management

Storage management | HDFS HBase

I)Mass Amherst CS677: Distributed and Operating Systems Lecture 25, page 31

Ecosystem overview

* General purpose framework: low level processing APIs
— MapReduce, Spark, Flink

» Abstraction frameworks: higher level abstractions for processing
— Pig

* SQL frameworks: allow data querying : Hive

» QGraph processing frameworks: Giraph

* Machine learning frameworks: MLIib, Oyyx (standalone:
TensorFlow)

* Real-time/stream processing: Spark Streaming, Storm, Kafka

* Cluster managers: YARN, Mesos (allocate machines to separate
frameworks).

I)Mass Amherst CS677: Distributed and Operating Systems Lecture 25, page 32

Spark Platform

Spark MLlIib
Streamingll (machine

learning)

Apache Spark

Ease of use: supports Java, Scala or Python

General: combines SQL, streaming, ML, graph processing

Faster due to in-memory RDDs

Compatibility: runds on Hadoop, standalone, etc

UMass Amherst CS677: Distributed and Operating Systems Lecture 25, page 33

Spark Architecture

* Resilient Distributed Datasets: distributed memory
— objects cached in RAM across a cluster

* DAG execution engine : eliminates MapReduce multi-stage model
* RDD Narrow transform: Map, Filter, Sample

* RDD Wide transform: SortBy, ReduceBy, GroupBy, Join

* Action: Collect, Reduce

UMass Amherst CS677: Distributed and Operating Systems Lecture 25, page 34

